
2016/11/30 11:36 1/12 Introduction

BLIZAAR - http://blizaar.list.lu/

Introduction

This document describes both the architecture for the front end (web based), middleware and back
end components of BLIZAAR project platform, as well as describing how to setup and install all
components of the platform. The goal of this document is to ensure all project participant understand
full how the system is built and how each component interacts, and how to install the BLIZAAR
platform .

Terminology

As this is a graph visualization based project there are many different terms to describe the same
entities. Within this documentation we will attempt to be consistent , however as the framework
includes many different subsytems and APIs , it is not always possible. When referring to the entities
in a graph we refer to them as “nodes”. While often this term is only used to refer to them when
visualized, we use the term in all contexts. Other systems frequently use the term vertex, in place of
node, and vertices in place of nodes. For all of our purposes within this documentation these terms
are equivalent. When referring to the relationships between nodes we use the term “Links”. Again this
term originally refers to the visual aspect . However many libraries we use frequently use that term
rather than the more visualization neutral “edges”. Again the term edges can be found in multiple
different systems, however in the context of this documentation the terms can be considered
equivalent Depending on their background of a person they may be more used to referring to a set of
nodes related by links as a “graph” or a “network”. We will use the term graph, however in the
context of this documentation the terms can be considered equivalent

System Architecture

The system is centered around a node.js middle-ware web-server and Neo4J back end. For details
about the versions of each piece of software see the BLIZAAR toolchain setup section. See figure for
the full system architecture.

Last
update:
2016/10/20
14:46

project_architecture_tools_and_design_standards_document http://blizaar.list.lu/doku.php?id=project_architecture_tools_and_design_standards_document

http://blizaar.list.lu/ Printed on 2016/11/30 11:36

Back End Components

Nodejs Server

This server acts as middleware for the entire project . It serves all webpages to the front end , and is
also responsible for user access rights All requests from the front end pass through this server to their
target back end components whether it is for data retrieval from the graph database or for processing
of the graph data. The Nodejs middleware stores an instance of user’s current graph for each
currently logged in user, which can be passed to the various backend engines for processing and
updated form the neo4j database For details of the software components of the nodejs server see
section….

Neo 4j server

The neo 4j server stores all project master data sources. It is accessed via its built in REST API from
the node.js middleware server. All requests for data from the front end or other components should
be made to the middle ware which then queries the neo4j database. The various different data sets
are distinguished in the database using neo4j node labels.

http://blizaar.list.lu/lib/exe/fetch.php?media=blizaar_architecture.png

2016/11/30 11:36 3/12 Introduction

BLIZAAR - http://blizaar.list.lu/

R Server

The back end R server is used to process graph data. R scripts are stored within in the R engine are
remotely invoked from the nodejs server’s R server component. Acces to a running R instance is
provided by Rserve, the standard R server application available with all R installations.

Mongo DB

This data base store information related to user profiles and access rights. We have chosen this DB
rather than storing this information in the graph DB as it integrates easily into the neo4j software
stack with minimal overhead, and user information does not require the use of a graphDB.
Additionally, we aim to keep a clean common master data DB that can be shared across all users.

Tulip

This component provides additional graph processing functionality and is to be accessibile by the
middleware. Currently this component is not integrated into the system. Gephi / other Modules Other
components such as Gephi (running on a tomcat server) can be integrated to provide functionality not
offered by other graph processing components

Front End components

Angular.js

Angular.js is the framework being used for front end development. It offers a robust, proven framw
work for website design. For more information see section

Bootstrap

Bootstap is a css library that offers a consistent look and feel to all front end webpages. It is
frequently used in angular projects

D3.js/ WebGl / Visualisation development

Development of front end visualizations is not constrained to any specific technology. Project
researchers are free to use any available trools, such as d3.js, webgl sigma.js or any technology of
their choice. Currently d3.js , sigmal and webgl have been tested and shown to not have any
significant issues interacting with the rest of the framework.

Last
update:
2016/10/20
14:46

project_architecture_tools_and_design_standards_document http://blizaar.list.lu/doku.php?id=project_architecture_tools_and_design_standards_document

http://blizaar.list.lu/ Printed on 2016/11/30 11:36

Graph Structure and Storage

Graph Data Structure

We use a very basic graph data structure modelled on the common types of structure used by d3.js
when processing graphs. At its most basic, a graph object consists of a simple JavaScript object with
two properties , nodes and links. Each link contains an id of its source and target rather than a
reference to the node object . This is to allow easier transmission of the graphs via json, as a
reference cannon be properly encoded in a json message without duplicating objects. To allow fast
lookups of nodes and links, a look up table (simply a JavaScript object used as a property map) for
each is calculated in the middleware . For nodes it is called node, and the key is the node id. For links
it is called link and the key is the link Id.

Master Graph Data

As part of this project all primary input data sets (e.g. the histograph data set, protein interaction data
sets, metabolite interaction data sets etc.) for both application domains are stored in the neo4J back
end graph data base. This master graph data is the source form which users build their own graphs.
Neo4J uses the field “id” to identify nodes uniquely. We also use this a unique identifier for all of our
nodes throughout the framework.

User Graph Data

A user builds a graph by making queries from the front end to the back end master graph data sets
via the middle ware. To avoid having the front end having to pass the full graph to the middle ware
for every query we store a copy of each users current graph on the server. As well as reducing load
between the front end and back end, this simplifies saving graphs and work in progress on a per user
basis

Neo4J Graph DB structure and Terminology

We store all master graph data in Neo4j. Regardless of the application domain, all input graph data is
stored there. Within neo 4j node labels are used to identify sets of nodes. A node can have multiple
labels. Each back end graph is distinguished by a different label. Additionally labels are used to
distinguish different types of nodes. For example within the histograph data sets, all nodes have a
label “histograph” and nodes describing people have a label “person”, as well as “histograph”.
Histograph node describing places will have a label “place” as well as “histograph”. Edges also have
can have a type specified , which can be used to restrict the edges which come back associated to
nodes in a query. Edges and labels querying has specific semantics in (the Neo4j query language),
however all of this should be invisible at the front end. We merely describe the label convention here
to help understand better how queries for graph data are formulated, passed from the front end to

2016/11/30 11:36 5/12 Introduction

BLIZAAR - http://blizaar.list.lu/

the middle-ware, translated into cypher in the middle-ware and passed as a query to the back end.

BLIZAAR Tool chain setup

Application Framework Tools

The following components / tools are necessary to set up you BLIZAAR project so that the applications
will run. The version of each that has been tested is specified, using other versions that contain a
major release may cause issues, however minor version differences should generally be fine. For
windows users installers for Neo4j, MongoDB and Node.js are available from the project git hub and
can be downloaded from the repository http://blizaar.list.lu:5001/mcgee/blizaar_windows_tools

GIT 2.9.0

Git is out version control tool. It is used to retrieve the project code and data and integrate changes
from all team members in a single repository. When you download GIT and install git (on windows) ,
another tool called git BASH is installed. This is a command line shell that allows for access to git
commands, and is also useful for writing scripts and executing scripts It is available from
https://git-scm.com/

Neo4J (3.0.3)

Neo 4J is our graph data base and we will be using it to store our graph data. As it is a graph database
it does not use SQL, but rather its own query language Cypher. It can be downloaded from
http://blizaar.list.lu:5001/mcgee/blizaar_windows_tools We are using the Community edition. It is best
to download the ZIP version, as this allows neo4j to be started via a script. Neo 4j has a dependency
on java . If you have issues running it download the java jdk at the following link, an ensure that the
JAVA_HOME environment variable points at its root folder. Download the 64 bit version (Windows x64
or luinixX64) from the following address
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Mongo DB (3.2.7)

Mongo DB is a SQL free database that we are uses to store system administration setting and
information. We also will be using it to cache user data and preferences.
https://www.mongodb.com/download-center?jmp=nav#community Node.js (6.5.0) Node is our
application server . It will be our webserver and middleware route all messages form front end to
backend https://nodejs.org/en/download/current/

R (3.3.x)

We use R for some back end computations, via the R serve package, providing the interface for the

http://blizaar.list.lu:5001/mcgee/blizaar_windows_tools
https://git-scm.com/
http://blizaar.list.lu:5001/mcgee/blizaar_windows_tools
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.mongodb.com/download-center?jmp=nav#community
https://nodejs.org/en/download/current/

Last
update:
2016/10/20
14:46

project_architecture_tools_and_design_standards_document http://blizaar.list.lu/doku.php?id=project_architecture_tools_and_design_standards_document

http://blizaar.list.lu/ Printed on 2016/11/30 11:36

node.js server. Setting up R for the project requires some additional action described later.

Rstudio

Rstudio is an environment for working with R and is much easier to use than the default interface.

Google Chrome

As this is a web tool, a browser is necessary. Many people already use chrome and it has been shown
to work well with existing visualizations. Firefox is acceptable too, however internet explorer will most
likely not work.

Javascript Development libraries

There are many many development libraries available for javascript. All javascript development
libraries, should be checked in as part og the GIT repository so all developers are accessing the same
version.

Installations Prerequisites:

Download each of the preceding applications, and ensure that you have access to the project
repository with your GIT username and password

Setup Procedure

1. Install Git

Git also installs git bash which is a bash based shell which is very useful for not only using GIT from
the command line, but also for scripting. Integrating the command “Git BASH here” unto the right
click menus (and option available during the install, see image) is a useful feature. It is best to only
use git BASH for command line control of GIT (so there is no need to enable it for use form the
windows command prompt)

2016/11/30 11:36 7/12 Introduction

BLIZAAR - http://blizaar.list.lu/

Onec git has been installed , it is worth setting up an ssh key to simplifying using git and checking out
of data. An ssh key allows a user on a specific machine to use git operations without having to enter a
username and password every time. See the section for more details.

2. Clone the repository

Get the project files as follows: Open a git bash window and navigate to the directory you would like
to store the project in and type in the following:

git clone --recursive http://blizaar.list.lu:5001/mcgee/blizaar_platform.git

3. Install Neo4j

Extract the zip tool to your chosen neo4j directory and note the path. Edit the neo4j_start.bat and
neo4j_stop.bat files in the project's root directory, to point at at your installation.

4. Install MongoDB

Install MongoDb using the downlaoded installer and edit the mongo_start.bat file in the project's root
directory, to point at at your installation.

5. Install Neo4J

Use the Neo4J installer to install Neo4J.

http://blizaar.list.lu/lib/exe/fetch.php?media=git_setup1.png

Last
update:
2016/10/20
14:46

project_architecture_tools_and_design_standards_document http://blizaar.list.lu/doku.php?id=project_architecture_tools_and_design_standards_document

http://blizaar.list.lu/ Printed on 2016/11/30 11:36

6. Clone the master Neo4J backend graph DB

Clone the Blizaar_neo4j_DB project and copy the blizaar.graphdb subfolder of the blizaar_data
subfolder of the project into the databases subdirectory of your Neo4J installations “data” folder.

If you have an ssh key set up clone it with:

git clone git@blizaar.list.lu:mcgee/blizaar_neo4j_DB.git

If you have no ssh key set up, you can colen it over http, however this is slower and less reliable:

git clone http://blizaar.list.lu:5001/mcgee/blizaar_neo4j_DB.git

Another option is to download and extract the zip file from the BIZAAR github installatzion at:
http://blizaar.list.lu:5001/mcgee/blizaar_neo4j_DB.git

7. Configure Neo4J

Edit the Neo4J config file (in the /conf/neo4j.conf subfolder of your Neo4J installation) to point at
blizaar.graphdb. i.e. set the following parameter:

dbms.active_database=blizaar.graphdb

8. Install R & RStudio

Install R and R studio, and then open the R.rproj file int he R subfolder of the BLIZAAR platform
installation directory. Run the script firstTimeSetup.r with the following command.

source('./firstTimeSetup.r')

8. Install Required Node Packages

The node.js middle-ware requires packages to be installed, fortunate node.js provide a package
manager. To install all required packages run the following command at the command prompt in the
BLIZAAR installation directory (you can use the regual windows command prompt, to git bash..

npm install

Running the Platform

To run the latform each of the components needs to be started: Neo4J, Rserver, MongoDB, and the
node.js middleware.

http://blizaar.list.lu:5001/mcgee/blizaar_neo4j_DB.git

2016/11/30 11:36 9/12 Introduction

BLIZAAR - http://blizaar.list.lu/

1. Start Neo4J

Start Neo4J by running the start_neo4J.bat batch file in the platform home directory. This file MUST be
run as admistrator.

2. Start MongoDB

Start MongoDB by running the start_neo4J.bat batch file in the platform home directory. This file must
NOT be run as admistrator.

3. Start RServe

Start RStudio by opening the R.rproj file in the R subfolder of the platform home directory. Run the
following command to start RServe:

source('./startRserve.R')

4. Start the node.js server

Open a command prompt and navigate to the BLIZAAR platform home directory. Type the following to
start the server

node app.js

The first time the server is run it will automatically create the MongoDB database file with a default
user and username.

5. Login to the application

Open the chrome browser and enter localhost:3333 in the navigation bar. The default username is
blizaar and the password is blizaar.

SSH keys

In order to simplifying checking in and checking out of data (and not having to enter a password every
time) generate an ssh key pair and add the public key to gitlab in your gitlab profile settings, under
ssh keys. This is strongly recommended as it will allow you to clone etc. via ssh. For example:

git clone git@blizaar.list.lu:mcgee/blizaar_platform.git

Using ssh is quicker, more secure and more reliable than using http, in addition to not requiring a
username and password for every operation. To generate your ssh key open up a git bash window
and type the following

Last
update:
2016/10/20
14:46

project_architecture_tools_and_design_standards_document http://blizaar.list.lu/doku.php?id=project_architecture_tools_and_design_standards_document

http://blizaar.list.lu/ Printed on 2016/11/30 11:36

ssh-keygen

Follow all onscreen instructions and once the generation is complete you public should be generated.
It can be found in a sub-directory of your systems home folder (this varies from system to system)
called .ssh. The file will have the extension “.pub” and the contents will look similar to the following:

ssh-rsa
AAAAB3NzaC1yc2EAAAABIAqzQQEAvyF0awxZMohnsdfnLWmg7Yd5tXvQqMEmpVi6jvAWLNrI2/7+
VMitAg1gOEJGHJolf/wiGLRMsSMXvFgHNPoAPnlApePiqsLnLSueCyGXZfKp+QUxEFUpblMM8E8p
Ti9BnWlrb21ZrzOZXcC0GSpo+h4zgt78Bjj7n79PboULCiXZopcTH7n6eT/Abyp1hXf/9eqgomL0
2DWPi5xf55laHBPc+BSusVa7M52bpWQA1ET80gamCqSaXTYkVBsq+uFqY4qvpbKJiMLm+S3SOHzI
mgmPVxlhF1YOhICDh8gE6w+D1LAMTWTdwdCu9Ayh3lbSuM/mZVaMxkekEeO7U/dj4w==
yourname@computername

To add your to the git lab server, login (http://blizaar.list.lu:5001/) and under “profile settings” (in the

menu on the left side) select “ssh keys”

http://blizaar.list.lu:5001/
http://blizaar.list.lu/lib/exe/fetch.php?media=ssh1.png

2016/11/30 11:36 11/12 Introduction

BLIZAAR - http://blizaar.list.lu/

Click on the “Add SSH key” button and paste your public key into the space provided and then click
on “Add Key”

More detailed instructions to generate an ssh key pair (using git bash) can be found here.
https://git-scm.com/book/en/v2/Git-on-thrver-Generating-Your-SSH-Public-Key

GIT GUI Integration

Torotise GIT is a useful too integrates GIT functionality into windows right-click menus, and makes for

http://blizaar.list.lu/lib/exe/fetch.php?media=ssh2.png
http://blizaar.list.lu/lib/exe/fetch.php?media=ssh3.png
https://git-scm.com/book/en/v2/Git-on-thrver-Generating-Your-SSH-Public-Key

Last
update:
2016/10/20
14:46

project_architecture_tools_and_design_standards_document http://blizaar.list.lu/doku.php?id=project_architecture_tools_and_design_standards_document

http://blizaar.list.lu/ Printed on 2016/11/30 11:36

simpler use of GIT for those who prefer to not have to use the command line. it can bee downloaded
from https://tortoisegit.org/download/

From:
http://blizaar.list.lu/ - BLIZAAR

Permanent link:
http://blizaar.list.lu/doku.php?id=project_architecture_tools_and_design_standards_document

Last update: 2016/10/20 14:46

https://tortoisegit.org/download/
http://blizaar.list.lu/
http://blizaar.list.lu/doku.php?id=project_architecture_tools_and_design_standards_document

	Introduction
	Terminology

	System Architecture
	Back End Components
	Nodejs Server
	Neo 4j server
	R Server
	Mongo DB
	Tulip

	Front End components
	Angular.js
	Bootstrap
	D3.js/ WebGl / Visualisation development

	Graph Structure and Storage
	Graph Data Structure
	Master Graph Data
	User Graph Data
	Neo4J Graph DB structure and Terminology

	BLIZAAR Tool chain setup
	Application Framework Tools
	GIT 2.9.0
	Neo4J (3.0.3)
	Mongo DB (3.2.7)
	R (3.3.x)
	Rstudio
	Google Chrome
	Javascript Development libraries

	Installations Prerequisites:
	Setup Procedure
	1. Install Git
	2. Clone the repository
	3. Install Neo4j
	4. Install MongoDB
	5. Install Neo4J
	6. Clone the master Neo4J backend graph DB
	7. Configure Neo4J
	8. Install R & RStudio
	8. Install Required Node Packages

	Running the Platform
	1. Start Neo4J
	2. Start MongoDB
	3. Start RServe
	4. Start the node.js server
	5. Login to the application

	SSH keys
	GIT GUI Integration

